ÉCOLE NORMALE SUPÉRIEURE

CONCOURS D'ADMISSION 2018

FILIÈRE **PSI**

COMPOSITION DE PHYSIQUE – U

(Durée : 6 heures)

- L'usage de calculatrices n'est pas autorisé. Les applications numériques seront effectuées avec un chiffre significatif.
- Le sujet comprend 15 pages numérotées de 1 à 15.
- Dans le cas où un(e) candidat(e) repère ce qui lui semble être une erreur d'énoncé, il (elle) le signale lisiblement sur sa copie, propose la correction et poursuit l'épreuve en conséquence.

* * *

Jonctions Josephson et cryogénie

Ce sujet comporte deux parties largement indépendantes.

La première partie est consacrée à l'étude d'un dispositif appelé jonction Josephson, dont les différentes variantes sont étudiées depuis son invention dans les années 1960. Dans la seconde partie, on étudie le fonctionnement d'un réfrigérateur à dilution. Ces réfrigérateurs permettent l'étude des phénomènes quantiques dans des dispositifs expérimentaux comme les jonctions Josephson à une température très inférieure à 1 K. Ces deux éléments sont de nos jours utilisés dans des tentatives de développement d'un ordinateur « quantique », potentiellement capable de surpasser les ordinateurs conventionnels dans le traitement de problèmes complexes comme la factorisation de grands nombres.

Constantes fondamentales

- Constante de Planck réduite $\hbar=\frac{h}{2\pi}=1,05\times 10^{-34}\,{\rm J\cdot s}$
- Charge élémentaire de l'électron $e = 1,60 \times 10^{-19} \,\mathrm{C}$
- Constante de Boltzmann $k_B = 1,38 \times 10^{-23} \,\mathrm{J} \cdot \mathrm{K}^{-1}$
- Constante des gaz parfaits $R = 8,31 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$
- Accélération de la pesanteur terrestre $g = 9.8 \,\mathrm{m \cdot s^{-2}}$

Formulaire

— Pour $a \in \mathbb{R}$ et $a^2 > 1$,

$$\int_{0}^{2\pi} \frac{\mathrm{d}x}{a - \sin x} = \frac{2\pi}{\sqrt{a^2 - 1}}$$

— Pour une fonction $\psi : x \mapsto \psi(x)$ à valeurs complexes, et en notant ψ^* la fonction complexe conjuguée :

$$\psi^* \frac{\partial^2 \psi}{\partial x^2} - \psi \frac{\partial^2 \psi^*}{\partial x^2} = \frac{\partial}{\partial x} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right)$$

— Développement de Jacobi-Anger : pour $x \in \mathbb{R}$

$$e^{ix\sin\theta} = \sum_{n=-\infty}^{\infty} J_n(x)e^{in\theta}$$

où J_n est une fonction à valeurs réelles, appelée fonction de Bessel d'ordre n. On admet la relation : $\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, J_{-n}(x) = (-1)^n J_n(x)$

Première partie Relations courant-phase dans une jonction Josephson

FIGURE 1 – Schéma d'une jonction Josephson, dans laquelle deux supraconducteurs S_1 et S_2 sont couplés l'un à l'autre à travers un film mince non-supraconducteur d'épaisseur 2d (noté N).

Une jonction Josephson est représentée en Fig.1. Deux électrodes d'un matériau dit « supraconducteur » $(S_1 \text{ et } S_2)$ sont reliées par une mince couche de matériau non-supraconducteur (noté génériquement N).

1 Statique d'une jonction Josephson

1.1 Equations Josephson

La jonction est modélisée en trois régions. Dans les régions S_1 et S_2 , on admet que les électrons forment des paires (appelées « paires de Cooper ») à l'origine de la supraconductivité. Le supraconducteur de la région S_j , j = 1, 2 peut être décrit par une fonction d'onde complexe, supposée uniforme dans S_j , et notée Ψ_j . La physique d'une jonction Josephson peut alors se comprendre comme le couplage entre les deux supraconducteurs par pénétration partielle de Ψ_j dans la région centrale. Celle-ci est ici décrite comme une barrière de potentiel de hauteur U(x) = U si $x \in [-d, d], U(x) = 0$ sinon.

La fonction d'onde $\Psi(x,t)$ décrivant le système obéit alors à l'équation à 1 dimension suivante, dite équation de Schrödinger :

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + U(x)\Psi \tag{1}$$

où \hbar est la constante de Planck réduite, $m = 2 m_e$ est la masse des paires de Cooper.

[1] Justifier l'expression de la densité de charge $\rho(x) = -2e|\Psi(x)|^2$ et obtenir l'équation différentielle qu'elle vérifie. Vérifier à l'aide du formulaire qu'elle correspond à une équation de conservation du courant pour le courant :

$$I(x) = \frac{2e\hbar}{m} \operatorname{Re}\left(\frac{1}{i}\Psi^*(x)\frac{\partial\Psi}{\partial x}(x)\right)$$
(2)

On cherche à séparer les variables x et t en cherchant la solution dite « stationnaire » de cette équation, c'est-à-dire vérifiant (avec E énergie associée à l'état Ψ) :

$$i\hbar\frac{\partial\Psi}{\partial t} = E\Psi \tag{3}$$

[2] Montrer qu'on peut écrire $\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$. Quelle est l'équation différentielle vérifiée par la fonction ψ dans la région normale N?

[3] On suppose E < U. Montrer que, dans la région normale N, la fonction d'onde $\psi(x)$ peut s'écrire :

$$\psi(x) = A \operatorname{ch}(\kappa x) + B \operatorname{sh}(\kappa x), \quad \kappa = \frac{\sqrt{2m(U-E)}}{\hbar}$$
(4)

où A et B sont deux coefficients complexes, et ch et sh désignent respectivement les fonctions cosinus et sinus hyperboliques.

[4] On admet que ψ est uniforme dans S_j , j = 1, 2, avec $\psi(x) = \sqrt{n_j}e^{i\theta_j}$ où n_j est la densité de paires de Cooper. Quelles sont alors les conditions limites à imposer en $x = \pm d$ pour que Ψ soit continue aux interfaces N/S_j , j = 1, 2? Déterminer les coefficients A et B en fonction de d, κ, n_j et θ_j .

[5] En utilisant les résultats de la question [1], montrer que la jonction est parcourue par un courant $I_s(\phi)$, où ϕ est la différence de phase supraconductrice $\phi = \theta_2 - \theta_1$, tel que :

$$I_s(\phi) = I_c \sin \phi \qquad (Première \ \acute{e}quation \ Josephson) \tag{5}$$

Donner I_c en fonction des paramètres du problème.

[6] Quand une tension V est appliquée entre les deux électrodes S_1, S_2 , on admet que θ_j devient lentement dépendant de t (n_j restant constant). On a alors dans la région S_j l'équation $i\hbar \frac{\partial \Psi}{\partial t} = E_j \Psi$, avec $E_1 \neq E_2$. L'équilibre électrochimique impose la relation $E_1 - E_2 = 2eV$. En déduire la seconde équation de Josephson sur la différence de phase supraconductrice ϕ :

$$\frac{\partial \phi}{\partial t} = \frac{2eV}{\hbar} \qquad (Seconde \ \acute{e}quation \ Josephson) \tag{6}$$

[7] Montrer que les deux équations Josephson (5) et (6) ont pour conséquence les assertions suivantes :

- la jonction Josephson peut transporter un courant $I_s(\phi) = I_c \sin \phi$ à V = 0 (c'est-àdire non dissipatif) appelé supercourant. Ce dernier est d'une amplitude maximale $I_c = \max_{\phi} I_s(\phi)$ appelé courant critique.
- lorsqu'une tension $V \neq 0$ est appliquée aux bornes de la jonction Josephson, celle-ci est parcourue par un courant I alternatif à une fréquence f_J proportionnelle à V (appelée fréquence Josephson). Calculer et évaluer numériquement le rapport f_J/V en GHz · μV^{-1} .

Comment varie ϕ dans chacun de ces deux régimes ?

[8] Entre les instants t et t + dt, un opérateur fait passer la phase de ϕ à $\phi + d\phi$. Calculer le travail électrique infinitésimal associé à la variation de phase $d\phi$. Montrer qu'il dérive d'une énergie potentielle $E_J(\phi) = E_c(1 - \cos \phi)$, et donner E_c en fonction de I_c et de constantes fondamentales (on fixe ici $E_J(0) = 0$ par convention).

[9] Rappeler la relation entre la tension V et le courant I dans une bobine d'inductance L. Montrer à partir des équations Josephson que la jonction peut être vue comme une bobine d'inductance non linéaire $L_J(\phi) = \frac{L_c}{\cos \phi}$ où l'on exprimera L_c en fonction de I_c et de constantes fondamentales.

1.2 Réponse à un champ magnétique d'une Jonction Josephson unique

On place la jonction dans un champ uniforme $\mathbf{B} = B\mathbf{u}_{\mathbf{z}}$. On admet que la phase ϕ dépend alors de l'abscisse y sous la forme $\frac{\partial \phi}{\partial y} = 2d \frac{2\pi}{\Phi_0} B$, avec $\Phi_0 = \frac{h}{2e}$.

[10] Calculer $\phi(y)$ en fonction de y, d, W, B et $\phi(-W/2)$. De combien varie $\phi(y)$ entre y = -W/2 et y = W/2? Exprimer cette variation en fonction du flux Φ_B du champ magnétique **B** à travers la surface S = 2dW de la jonction.

[11] On écrit $dI_s(y) = j_s(y) dy$ le supercourant circulant à travers l'élément infinitésimal situé à la position y et de largeur dy, avec la densité linéique de supercourant $j_s(y) = j_c \sin \phi(y)$ et j_c le courant critique linéique. Tracer $j_s(y)$ pour $\Phi_B = \Phi_0/2$ et $\Phi_B = \Phi_0$, (on choisira $\phi(-W/2) = 0$). Justifier que le supercourant total porté par la jonction est nul pour $\Phi_B = n\Phi_0, n \in \mathbb{Z}^*$.

[12] Calculer le supercourant total $I_s = \int_{-W/2}^{W/2} dI_s(y)$ pour $\phi(-W/2)$ et Φ_B quelconques. En déduire que le courant critique total $I_c(\Phi_B) = \max_{\phi(-W/2)} I_s$ s'écrit :

$$I_c(\Phi_B) = j_c W \left| \frac{\sin \frac{\pi \Phi_B}{\Phi_0}}{\frac{\pi \Phi_B}{\Phi_0}} \right|$$
(7)

[13] À l'aide des résultats des questions [11] et [12], tracer l'allure de $I_c(\Phi_B)$.

1.3 Montage en anneau

On étudie maintenant le cas où deux jonctions JJ_1 et JJ_2 (de différences de phase ϕ_1 et ϕ_2) sont placées en parallèle autour d'un anneau supraconducteur, comme sur la Fig.2. On note Ile courant en entrée de l'anneau. De plus, on suppose les deux jonctions infiniment étroites, de sorte que le flux à travers la jonction est négligeable devant le flux Φ_B dans l'anneau. On admet alors la relation $\phi_2 - \phi_1 = \frac{2\pi\Phi_B}{\Phi_0}$.

FIGURE 2 – Schéma électrique d'un montage à deux jonctions en anneau – Les jonctions sont notées JJ_1 et JJ_2 , et représentées conventionnellement par une croix. Φ_B désigne le flux du champ magnétique à travers l'anneau.

[14] On suppose dans un premier temps que les jonctions JJ_k portent un supercourant $I_{s,k}(\phi_k) = I_{c,0} \sin \phi_k \ (k = 1, 2)$, avec le même courant critique $I_{c,0}$. Calculer et tracer le courant critique total de l'ensemble des 2 jonctions en anneau $I_c(\Phi_B) = \max_{\phi_1} (I_{s,1}(\phi_1) + I_{s,2}(\phi_2))$.

Lorsque la région normale N ne peut être modélisée par une barrière de potentiel U(x), la relation courant-phase $I_s(\phi)$ est périodique en ϕ mais ne prend pas nécessairement la forme $I_s(\phi) = I_c \sin \phi$.

Dans le reste de cette section, on suppose que la jonction 1 vérifie $I_{s,1}(\phi_1) = I_{c,1} \sin \phi_1$, et que la jonction 2 a une relation courant-phase $I_{s,2}(\phi_2)$ inconnue que l'on cherche à déterminer. On suppose $\gamma = \frac{I_{c,2}}{I_{c,1}} \ll 1$. Pour un flux Φ_B fixé dans l'anneau, on cherche un développement du courant critique total $I_c(\Phi_B)$ perturbativement en γ . Le courant critique $I_c(\Phi_B)$ de l'ensemble des deux jonctions est atteint pour $\phi_1 = \phi_{c,1}$, et on suppose que l'on peut écrire le développement perturbatif suivant :

$$I_{c} = I_{c}^{(0)} + \gamma I_{c}^{(1)} + \mathcal{O}(\gamma^{2})$$
(8)

$$\phi_{c,1} = \phi_1^{(0)} + \gamma \phi_1^{(1)} + \mathcal{O}(\gamma^2)$$
(9)

[15] Montrer tout d'abord que l'on obtient à l'ordre 0 les équations $I_c^{(0)} = I_{c,1}$ et $\phi_1^{(0)} = \frac{\pi}{2}$.

[16] Obtenir ensuite à l'ordre 1 les relations suivantes, qui permettent la mesure de $I_{s,2}(\phi_2)$:

$$\phi_{c,1} = \frac{\pi}{2} + \frac{1}{I_{c,1}} \frac{\mathrm{d}I_{s,2}}{\mathrm{d}\phi_2} \Big|_{\phi_2 = \frac{\pi}{2} + \frac{2\pi\Phi_B}{\Phi_0}}$$
(10)

$$I_{c}(\Phi_{B}) = I_{c,1} + I_{s,2} \left(\frac{\pi}{2} + \frac{2\pi\Phi_{B}}{\Phi_{0}}\right)$$
(11)

[17] On donne les courbes expérimentales suivantes (Fig.3), représentant le courant $I_c(\Phi_B)$ mesurée avec une jonction d'antimoinure d'indium (InSb) soumise à un faible champ magnétique $b_0 = 120 \text{ mT}$ dans le plan de la jonction (et qui ne modifie donc pas Φ_B) et à un champ électrique E_{ext} qui permet de changer les propriétés de la jonction. Que-dire de $I_{s,2}(0)$ pour les différents choix de E_{ext} ? Justifier le nom de « jonction ϕ_0 ».

FIGURE 3 – Relations courant-phase d'une jonction Josephson InSb pour différents choix du champ électrique E_{ext} – Par souci de lisibilité, les courbes expérimentales ont été décalées selon l'axe vertical.

2 Dynamique d'une jonction Josephson

2.1 Modèles RCSJ et RSJ

En réalité, il est difficile expérimentalement d'imposer une tension V fixe aux bornes d'une jonction Josephson, en raison de sa très faible impédance aux faibles tensions. Pour décrire correctement le comportement d'une jonction Josephson soumise à un courant I, on adopte le modèle RCSJ (« Resistively and Capacitively Shunted Junction »). Dans ce modèle (cf. Fig.4), le transport de paires de Cooper dans la jonction est modélisé par l'élément JJ comme précédemment, vérifiant les deux équations Josephson (5) et (6). En parallèle, une résistance R symbolise le transport ohmique d'électrons et une capacité C modélise le couplage capacitif entre les deux armatures supraconductrices de la jonction. Dans ce cas, I est un courant continu et la tension V(t) aux bornes de la jonction est oscillante. On introduit alors la tension continue moyenne $\langle V \rangle$ mesurée sur des temps de mesures τ_m longs :

$$\langle V \rangle = \lim_{\tau_m \to \infty} \frac{1}{2\tau_m} \int_{-\tau_m}^{\tau_m} V(t) dt$$

[18] Écrire les équations du circuit pour un courant continu I imposé par l'opérateur, et obtenir une équation différentielle sur la différence de phase ϕ .

[19] Établir une analogie avec le mouvement d'une particule fictive de coordonnée ϕ soumise à une force de frottements $F = -k \frac{d\phi}{dt}$, où $k = \frac{\hbar^2}{4e^2R}$, et évoluant dans un potentiel effectif $U(\phi)$. Expliciter la masse effective m de la particule fictive en fonction des paramètres du problème. Montrer que $U(\phi) = E_J(\phi) - E_c \frac{I}{L}\phi$.

[20] Représenter graphiquement $U(\phi)$ dans les deux cas $0 < I < I_c$ et $I > I_c$.

FIGURE 4 – Schéma de la jonction Josephson dans le modèle RCSJ

[21] Donner sans calculs les positions d'équilibre stable possibles de la phase ϕ dans la limite I = 0. En se limitant au cas où I = 0 et k = 0, montrer par un développement limité de $U(\phi)$ que V(t) oscille au voisinage de ces positions d'équilibre avec une fréquence que l'on précisera, appelée fréquence plasma.

[22] En supposant $k \neq 0$, décrire alors sans calculs la caractéristique $I - \langle V \rangle$ pour $|I| < I_c$.

On s'intéresse désormais au cas où $|I| > I_c$. Afin de simplifier la résolution, on se place dans toute la suite du problème dans la limite C = 0 (modèle RSJ).

[23] En remarquant que la particule ajuste sa vitesse instantanément au potentiel $U(\phi)$, déterminer sans calculs et représenter l'allure de V(t) pour $I = I_c^+$ (très légèrement supérieur à I_c), et $I \gg I_c$.

[24] Dans quelle branche du circuit circule la majeure partie du courant dans la limite $I \gg I_c$? En déduire le comportement asymptotique de $\langle V \rangle$.

[25] Pour $I > I_c$, V est donc une fonction périodique (après éventuellement un régime transitoire), de période T. En utilisant l'équation différentielle sur ϕ , écrire T sous la forme d'une intégrale sur ϕ faisant intervenir I, I_c , et R. À l'aide du formulaire, montrer que

$$T = \frac{h}{2eR} \frac{1}{\sqrt{I^2 - I_c^2}}$$
(12)

[26] Justifier que $\langle V \rangle = \frac{h}{2eT}$. Cette relation est-elle compatible avec la fréquence Josephson f_J obtenue en [7]? En déduire $\langle V \rangle$ pour $|I| > I_c$.

[27] À l'aide des résultats des questions [22] et [26], représenter graphiquement la caractéristique courant-tension $I - \langle V \rangle$ pour I quelconque (avec I en abscisse et $\langle V \rangle$ en ordonnée).

Les courants et tensions alternatives générés dans le circuit par la jonction Josephson donnent lieu à une émission d'ondes électromagnétiques de même fréquence. Il est alors possible de collecter ces ondes et d'en mesurer l'amplitude A à fréquence de détection f_d fixée, lorsque l'on varie le courant I. La figure 5 présente deux exemples de données expérimentales.

[28] A l'aide des réponses aux questions précédentes, donner une explication quantitative aux observations de la figure 5 a).

[29] En figure 5 b), par quelle modification de la relation courant-phase $I_s(\phi)$ pouvez-vous expliquer les observations expérimentales? Justifier le terme d'effet Josephson fractionnaire dans ce dispositif.

FIGURE 5 – Emission Josephson dans deux jonctions Josephson différentes, pour une fréquence de détection $f_d = 3 \text{ GHz} - \text{La courbe } I - \langle V \rangle$ est représentée en gris clair sur l'axe de gauche (courant I), tandis que l'amplitude A collectée est en noir et sur l'axe de droite. Le pic d'émission est environ à $\langle V \rangle \simeq \pm 6 \,\mu\text{V}$ pour a) et $\langle V \rangle \simeq \pm 12 \,\mu\text{V}$ pour b).

2.2 Marches de Shapiro

On étudie toujours le comportement d'une jonction Josephson vérifiant les équations (5) et (6). Celle-ci est désormais soumise à un courant d'excitation de la forme $I = I_{dc} + I_{ac} \sin(2\pi f t)$, et comportant donc à la fois une composante continue I_{dc} et une composante alternative d'amplitude I_{ac} . Il apparaît alors des régimes dits de « verrouillage de phase », où la dynamique de la phase ϕ se synchronise avec la fréquence de l'excitation f, c'est-à-dire que ϕ vérifie la relation $\phi(t+1/f) = \phi(t) + 2\pi n$, avec n nombre entier.

[30] Montrer qu'en cas de verrouillage de phase, la tension moyenne $\langle V \rangle$ est nécessairement de la forme $\langle V \rangle = n\Delta V$, où $\Delta V = \frac{hf}{2e}$ et n est un nombre entier. On suppose que à l'instant t, la particule fictive de coordonnée ϕ est situé dans un minimum du potentiel $U(\phi)$. Où se situe alors la particule à l'instant t + 1/f si $\langle V \rangle = n\Delta V$?

Dans les questions suivantes, nous allons étudier la gamme de paramètres (I_{dc}, I_{ac}) pour laquelle le verrouillage de phase est observé, afin d'en déduire l'allure de la caractéristique $I - \langle V \rangle$.

[31] Montrer que l'équation du modèle RSJ prend la forme suivante :

$$\frac{\mathrm{d}\phi}{\mathrm{d}\tau} + \sin\phi = i_{dc} + i_{ac}\sin\xi\tau,\tag{13}$$

avec $i_{dc} = I_{dc}/I_c$ et $i_{ac} = I_{ac}/I_c$, et expliciter τ et ξ .

[32] On se limite au cas où la condition $R \ll 2\pi f L_J$ est vérifiée. Où circule alors l'essentiel du courant? Justifier sans calculs que dans cette limite, les non-linéarités du circuit sont faibles, et que la tension V(t) peut alors être considérée comme sinusoïdale.

On note par conséquent, avec $v = V/RI_c$ la tension adimensionnée et θ une phase inconnue a priori :

$$v(\tau) = \langle v \rangle + v_0 \cos(\xi \tau + \theta)$$

$$\phi(\tau) = \phi_0 + \langle v \rangle \tau + \frac{v_0}{\xi} \sin(\xi \tau + \theta)$$

[33] Écrire à partir de l'équation (13) l'équation reliant $\langle v \rangle$ et v_0 . Développer l'équation ainsi obtenue à l'aide du développement de Jacobi-Anger (voir formulaire).

[34] Calculer la moyenne temporelle $\langle \ldots \rangle$ de l'équation ainsi obtenue et démontrer que — si $\forall n, \langle V \rangle \neq n \Delta V$, alors $\langle V \rangle = RI_{dc}$ — si $\exists n, \langle V \rangle = n \Delta V$, alors $\langle V \rangle = RI_{dc} - (-1)^n RI_c J_n \left(\frac{2eRI_c v_0}{hf}\right) \sin(\phi_0 - n\theta)$

[35] On admet que v_0 ne dépend que de I_{ac} . À I_{ac} fixé, donner alors l'intervalle de valeurs de I_{dc} pour lequel $\langle V \rangle = n\Delta V$.

[36] On donne en Fig.6 l'allure des fonctions de Bessel J_n pour n = 0, 1, 2, 3. En déduire l'allure de la caractéristique $I_{dc} - \langle V \rangle$ pour $2eRI_cv_0 = hf$, et y mettre en évidence des marches de tension dites « marches de Shapiro ». Comment évoluent leurs largeurs (selon l'axe I_{dc})?

FIGURE 6 – Fonctions de Bessel J_n , n = 0, ..., 3

Les marches de Shapiro sont à la base du développement d'un étalon de tension ultra-stable. En irradiant une jonction Josephson à l'aide d'une horloge métrologique de fréquence f connue (une horloge atomique par exemple), on produit une tension continue quantifiée multiple de hf/2e, et de l'ordre de quelques microvolts pour f de l'ordre du GHz. Les marches de Shapiro peuvent aussi mettre en évidence la périodicité du courant Josephson.

[37] Que devient la hauteur ΔV des marches de Shapiro si la jonction est le lieu d'un effet Josephson fractionnaire (comme décrit en [29])?

[38] Les courbes de la figure 7 ont été obtenues en appliquant une irradiation électromagnétique à différentes fréquences f sur une jonction Josephson. Commenter la figure suivante et expliciter notamment la fréquence d'irradiation pour lequel l'effet Josephson fractionnaire est le plus visible.

FIGURE 7 – Marches de Shapiro dans une jonction Josephson, pour trois fréquences d'excitation différentes

Deuxième partie Réfrigérateur à dilution

Données du problème

- Pression atmosphérique :
- $P_0 \simeq 1000 \,\mathrm{hPa}$
- Enthalpie de vaporisation de l'hélium ⁴He : $L_4 \simeq 92 \text{ J} \cdot \text{mol}^{-1}$
- Capacité thermique molaire de l'hélium ⁴He dans l'état liquide : $C_4 \simeq 12 \, {\rm J} \cdot {\rm K}^{-1} \cdot {\rm mol}^{-1}$
- Température d'ébullition de l'hélium ⁴He à pression atmosphérique P_0 : $T_4 = 4.2\,{\rm K}$
- Enthalpie de vaporisation de l'hélium ³He : $L_3 \simeq 21 \text{ J} \cdot \text{mol}^{-1}$
- Température d'ébullition de l'hélium ³He à pression atmosphérique P_0 : $T_3=3.2\,{\rm K}$
- Volume molaire de l'hélium ⁴He en phase superfluide : $v_4^S = 27.6 \, {\rm cm}^3 \cdot {\rm mol}^{-1}$
- Masse molaire de l'hélium ⁴He : $M_4 = 4 \,\mathrm{g} \cdot \mathrm{mol}^{-1}$

Depuis la fin des années 1960, les réfrigérateurs à dilution s'appuient sur les propriétés des mélanges binaires ${}^{3}\text{He}/{}^{4}\text{He}$ pour produire de très basses températures. Un schéma global est représenté en Fig.8. Les sections suivantes se concentrent sur l'étude de différentes parties d'un tel réfrigérateur, afin d'en développer un modèle rudimentaire.

FIGURE 8 – Schéma de fonctionnement d'un réfrigérateur à dilution

3 Le \ll pot 1 K \gg

On étudie d'abord le circuit d'hélium ⁴He qui assure le pré-refroidissement du circuit de dilution (objet de la section suivante). Le pot 1 K comprend un bain d'hélium ⁴He liquide bouillonnant, initialement à l'équilibre liquide-vapeur à température T_4 et P_0 . À l'aide de la pompe ⁴He, on pompe lentement le gaz ⁴He dans le pot 1 K afin d'abaisser la pression au dessus de l'hélium liquide, de sorte que l'hélium ⁴He reste à l'équilibre liquide/vapeur. On suppose que le bain contient n moles d'hélium et est parfaitement isolé thermiquement de l'extérieur. On note L_4 l'enthalpie de vaporisation molaire de l'hélium, et C_4 sa capacité thermique dans l'état liquide, supposées ici toutes deux indépendantes de la température.

[39] À l'aide de vos connaissances sur les diagrammes (P, T), justifier sans calcul que la température du bain d'hélium baisse.

On suppose pour l'instant que le bain d'hélium est isolé et contient une quantité initiale n_0 d'hélium liquide, à l'équilibre liquide/vapeur à pression atmosphérique P_0 .

[40] Soient dn la quantité d'hélium vaporisée et dT la variation de la température du bain. Établir une relation reliant dn, dT et la quantité totale d'hélium dans le bain n.

[41] Partant d'une quantité initiale n_0 d'hélium à pression et température P_0 et T_4 , estimer la quantité restante n/n_0 une fois une température T = 1 K atteinte. On donne $e^{0,4} \simeq 1,5$.

Pour faire fonctionner le circuit de ⁴He sur de longues durées, un petit prélèvement, qu'on ne cherchera pas à modéliser, est effectué sur le bain extérieur à 4,2 K. Il compense le pompage de sorte qu'un débit molaire constant $\dot{n} = \frac{dn}{dt}$ est maintenu entre le bain et la pompe. On cherche maintenant à déterminer la température la plus basse T_{lim} qui peut-être atteinte en régime permanent par le bain d'hélium ⁴He.

On admet que, dans chacune des deux phases, la différentielle d μ du potentiel chimique μ peut s'écrire :

$$\mathrm{d}\mu = -s\mathrm{d}T + v\mathrm{d}P$$

où s et v sont respectivement l'entropie et le volume molaire. On note respectivement v_4^G et v_4^L les volumes molaires de la phase gazeuse et liquide, avec $v_4^G \gg v_4^L$.

[42] Écrire l'égalité des différentielles $d\mu_{L/G}$ des potentiels chimiques dans les phases liquide et vapeur, et obtenir la relation dite de Clapeyron reliant la pression de vapeur saturante P_s et la température T:

$$\frac{\mathrm{d}P_s}{\mathrm{d}T} = \frac{L_4}{Tv_4^G} \tag{14}$$

[43] La phase vapeur est supposée se comporter comme un gaz parfait. Connaissant la condition d'équilibre liquide-vapeur à pression atmosphérique P_0 et à température T_4 , donner une expression de la pression P(T) dans la phase vapeur à température T, en fonction de P_0 , T_4 , R et L_4 .

[44] On suppose que le pompage sur la phase vapeur s'effectue avec avec un faible débit volumique $D_v = \frac{dV}{dt}$. Montrer qu'en régime permanent le débit molaire \dot{n} est proportionnel à $P_s(T)$.

[45] À une température T quelconque, quelle puissance thermique (dite puissance frigorifique) est extraite de l'environnement pour permettre le passage d'atomes ⁴He de la phase liquide à la phase vapeur avec le débit molaire \dot{n} ? Comment évolue-t-elle lorsque T diminue?

[46] En pratique, la condition d'équilibre est essentiellement imposée par la pompe qui permet d'atteindre une pression limite d'environ $P_{\text{lim}} = 100$ Pa. Calculer la température limite T_{lim} qui peut ainsi être atteinte, et justifier le nom usuel de pot 1 K pour le système de refroidissement ⁴He. On donne $\ln 10^{-3} \simeq -7$. Vous paraît-il possible d'atteindre des températures largement inférieures à 1 K par cette méthode ?

[47] En utilisant de l'hélium ³He, autre isotope stable, quelle température peut-on atteindre pour la même pression limite? Le prix de l'hélium ³He est néanmoins prohibitif. On se limite donc à un pot 1 K d'hélium ⁴He, tandis que ³He est utilisé en plus faible quantité dans le circuit de dilution que l'on étudie ci-après.

4 Circuit de dilution

Sur la figure 8, on repère aussi un circuit dit « de dilution », dans lequel est placé un mélange ${}^{3}\text{He}/{}^{4}\text{He}$. Le point le plus froid du réfrigérateur est la chambre de mélange (grandeurs indicées par M par la suite), autour de 10 mK, comme il sera démontré dans la dernière partie.

Comme indiqué sur la figure 8, la chambre de mélange est reliée par un tube à une autre chambre appelée bouilleur (grandeurs indicées par B). En fonctionnement, une unité de pompage pompe continuellement sur ce bain. La vapeur extraite est alors réintroduite et recondensée dans le condenseur, le tout formant donc un circuit fermé.

4.1 Mélange binaire ³He/⁴He dans la chambre de mélange

Dans cette section, on s'attache à la description des différentes phases situées dans chacune des chambres. Le mélange est en circulation fermée et a donc une composition globale constante, avec la fraction molaire $x_3 = \frac{n_3}{n_3+n_4} \simeq 0.2$, où $n_{3/4}$ sont les quantités de matière respectives en ³He et ⁴He. En phase gazeuse, ³He et ⁴He sont parfaitement mélangées. À basse température, la situation est différente :

— aucune phase solide n'apparaît

— plusieurs phases liquides sont possibles, selon le diagramme binaire isobare de la figure 9. On admettra que l'on peut lire le diagramme binaire de la figure 9 de manière identique à un diagramme liquide/solide, en supposant une miscibilité nulle entre les phases superfluide et liquide normal.

FIGURE 9 – Diagramme des mélanges binaires ${}^{3}\text{He}/{}^{4}\text{He}$ à basse température

La figure 9 présente le diagramme de phase du mélange ${}^{3}\text{He}/{}^{4}\text{He}$, en fonction de la fraction molaire de ${}^{3}\text{He} x_{3}$ et de la température T.

[48] Initialement, on suppose que le mélange de fraction molaire $x_3 \simeq 0.2$ est à une température de 1 K environ grâce au pré-refroidissement du pot 1 K. Dans quelle phase est alors le mélange?

[49] Décrire ce qu'il se passe lorsque ce mélange est refroidi (à composition constante) de 1 K à la température $T_M = 10$ mK. En particulier, quelles sont les compositions des deux phases dans la chambre de mélange M? Montrer que l'une des phases peut être assimilée à une phase ³He pure (appelée *phase concentrée*). On admettra que c'est la seconde phase, pauvre en ³He et appelée *phase diluée*, qui se situe en dessous dans la chambre de mélange.

4.2 Pompage dans le bouilleur et pression osmotique

Lorsque la pompe ³He est en marche, l'interface liquide/vapeur du mélange est située dans le bouilleur. La température est de $T_B \simeq 700 \,\mathrm{mK}$, avec une pression d'environ $P_B \simeq 100 \,\mathrm{Pa}$ dans la phase vapeur, limitée à nouveau par le pompage.

On admet que :

- la fraction molaire $x_{3,M}$ dans la phase diluée de la chambre de mélange reste constante égale à celle obtenue en [49]
- uniquement de l'hélium ³He est pompé dans le bouilleur. La phase vapeur dans le bouilleur contient en fait plus de 90% d'³He et sera assimilé à de l'hélium ³He pur.

Sous l'effet du pompage, un gradient de concentration de ³He s'établit donc. On s'intéresse ici au mécanisme dit de « pression osmotique » qui conduit les atomes d'³He de M vers B afin de maintenir une quantité suffisante de ³He dans le bouilleur.

Pour modéliser simplement le problème, on considère temporairement le système {phase diluée} comme fermé et isolé, c'est-à-dire sans échange thermique, de particules ou de travail avec la phase concentrée en M ou avec la phase vapeur en B. On suppose le flux d'atomes d'³He faible et on modélise par conséquent le tuyau reliant M à B comme une membrane semiperméable, permettant le passage des atomes ⁴He superfluide sans résistance, mais pas celui des atomes ³He. On suppose de plus que :

- les volumes de M et B sont constants
- la phase diluée, superfluide, ne transporte pas d'entropie. Pour une transformation impliquant cette phase, on a donc S = 0 et dS = 0.

Enfin, on rappelle l'expression de la différentielle de l'énergie interne U:

$$\mathrm{d}U = T\mathrm{d}S - P\mathrm{d}V + \mu_3\mathrm{d}n_3 + \mu_4\mathrm{d}n_4$$

où $\mu_{3/4}$ sont les potentiels chimiques de ³He et ⁴He.

[50] Écrire les différentielles $dU_{M/B}$ dans les chambres M et B. À quoi sont-elles réduites sous les hypothèses précédentes?

[51] Que vaut $dU_M + dU_B$ à l'équilibre? En déduire que le potentiel chimique des atomes ⁴He est constant : $\mu_{4,M}(T_M, P_M) = \mu_{4,B}(T_B, P_B)$.

[52] Relier les potentiels chimiques de $\mu_{4,M/B}$ au potentiel chimique $\mu_4^{\circ}(T, P)$ de ⁴He pur et à la fraction $x_{3,M/B}$ dans chacune des chambres, en supposant $x_{3,M/B} \ll 1$.

[53] Donner sans calculs et à l'aide de la différentielle de d μ les dérivées $\frac{\partial \mu_4^{\circ}}{\partial P}\Big|_T$ et $\frac{\partial \mu_4^{\circ}}{\partial T}\Big|_P$.

[54] Établir alors un développement de la différence $\mu_{4,M}^{\circ}(T_M, P_M) - \mu_{4,B}^{\circ}(T_B, P_B)$ au premier ordre en $P_M - P_B$ et $T_M - T_B$. En déduire la différence de pression osmotique $\Pi = P_M - P_B$, avec v_4^S le volume molaire de l'hélium ⁴He en phase superfluide :

$$\Pi = \frac{R}{v_4^S} \left(T_M x_{3,M} - T_B x_{3,B} \right) \tag{15}$$

Le tube vers le bouilleur n'étant à dessein pas totalement imperméable, les atomes d'³He peuvent migrer lentement de M vers B sous l'effet de cette différence de pression.

[55] Si aucun atome d'³He n'est pompé dans le bouilleur, que vaut Π une fois l'équilibre atteint? Montrer qu'alors $x_{3,B} \simeq 0,009$ dans le bouilleur. On utilisera les valeurs $T_B \simeq 700$ mK, $T_M \simeq 10$ mK.

[56] Si tous les atomes d'³He sont extraits du bouilleur, donner l'expression de la pression osmotique maximale Π_{max} qui peut être atteinte dans le réfrigérateur.

Une évaluation numérique correcte de Π_{max} nécessite de prendre la valeur $T_M \simeq 100 \text{ mK}$, car Π_{max} est en réalité constante en deçà de cette température, en raison de corrections quantiques.

[57] Évaluer numériquement Π_{max} pour $T_M \simeq 100 \text{ mK}$. À l'aide des données du problème, comparer Π_{max} à la pression hydrostatique de la colonne de liquide ⁴He située entre M et Bséparés de l = 50 cm (voir Fig. 8). Commenter.

4.3 Pouvoir frigorifique de la chambre de mélange et du bouilleur

On cherche maintenant à déterminer numériquement la puissance frigorifique au bouilleur et à la chambre de mélange, ainsi que la température la plus basse que peut atteindre le réfrigérateur, une fois le régime permanent atteint.

[58] Les questions précédentes montrent que seul ³He est en circulation, tandis que ⁴He reste globalement immobile. En admettant que le passage d'atomes d'³He de la phase concentrée à la phase diluée est endothermique, expliquer le principe de fonctionnement d'un réfrigérateur à dilution. En quoi cette configuration à deux chambres (bouilleur/chambre de mélange) permetelle de s'affranchir de la limite de température observée à la question [46] pour le pot 1 K?

On suppose que l'isolation thermique est imparfaite et que divers mécanismes de conduction parasites permettent un transfert thermique depuis l'extérieur sur la chambre de mélange M, avec une puissance thermique notée $P_{\text{ext},M}$. En régime stationnaire, ³He est injecté à température T_E en sortie des échangeurs (cf. Fig.8) dans la chambre de mélange, elle-même à température T_M . On note H_3 l'enthalpie molaire de l'hélium ³He pur, et $H_{3,d}$ l'enthalpie molaire de l'hélium ³He en phase diluée.

[59] On isole à l'instant t le système Σ constitué du fluide contenu entre l'entrée et la sortie de la chambre de mélange, ainsi que de la quantité $dn_3 = \dot{n}_3 dt$ qui va entrer dans M entre les instants t et t + dt. À l'instant t + dt, Σ est donc constitué des fluides contenus entre l'entrée et la sortie de la chambre de mélange, et de la quantité $dn_3 = \dot{n}_3 dt$ qui en est sortie entre t et t + dt. Écrire le bilan d'énergie du système fermé Σ , et en déduire la relation

$$P_{\text{ext},M} + \dot{n}_3 H_3(T_E) = \dot{n}_3 H_{3,d}(T_M) \tag{16}$$

[60] On admet que pour des températures inférieures à 40 mK, $H_3(T) \simeq h_3 T^2 \mathbf{J} \cdot \mathbf{mol}^{-1}$ et $H_{3,d}(T) \simeq h_{3,d} T^2 \mathbf{J} \cdot \mathbf{mol}^{-1}$. Obtenir la relation entre $P_{\text{ext},M}$ et T_M pour des échangeurs parfaits, c'est-à-dire pour lequel $T_E = T_M$.

[61] Estimer la température minimale T_{\min} atteinte pour $h_{3,d} = 96 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-2}$, $h_3 = 12 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-2}$, $P_{\mathrm{ext},M} = 0.3 \,\mathrm{\mu W}$ et $\dot{n}_3 = 30 \,\mathrm{\mu mol} \cdot \mathrm{s}^{-1}$.

[62] En étudiant le cas où $P_{\text{ext},M} = 0$, justifier la nécessité d'avoir de bons échangeurs (qui minimisent T_E) pour atteindre la valeur de T_M la plus basse possible.

En accord avec la Fig.8, le bouilleur assure le pré-refroidissement de la phase concentrée issue du pot 1 K (température $T_P = 1,3$ K) vers la température T_B , tandis que dans l'autre sens de circulation, des atomes de ³He passent de la phase liquide à la phase vapeur. On suppose comme précédemment qu'une puissance $P_{\text{ext},B}$ est apportée de l'extérieur sur le bouilleur. On note $L_{3,d} = 31 \text{ J} \cdot \text{mol}^{-1}$ l'enthalpie de vaporisation des atomes ³He.

[63] Effectuer un bilan de puissance similaire à celui de [59] au niveau du bouilleur, et relier $P_{\text{ext},B}$, \dot{n}_3 , $L_{3,d}$ et $H_3(T)$ en $T = T_P$ et $T = T_B$.

[64] Estimer $P_{\text{ext},B}$ et montrer que la puissance qui peut être absorbée à cet étage est beaucoup plus élevée qu'au niveau de la chambre de mélange.

* * *

Fin