Unités du Système International (SI)

En Septembre 1999, la NASA perd définitivement le contrôle de la sonde *Mars Climate Orbiter*, qui a déviée de l'orbite prévue. La perte financière est de 125 millions de dollars!

La cause de ce désastre financier? Une erreur de navigation, causée par le mélange d'unités de longueur! Le constructeur, *Lookheed Martin Astronautics*, a transmis certaines données en unités anglo-saxonnes au *Jet Propulsion Laboratory* de la NASA, qui les a réceptionnées comme étant en unités métriques ...[1]

1 Unités SI de base

Grandeur physique	Nom	Symbole
Longueur	mètre	m
Temps	seconde	s
Masse	kilogramme	kg
Courant électrique	Ampère	A
Température thermodynamique	Kelvin	K
Quantité de matière	mole	mol
Intensité lumineuse	candela	cd

2 Exemples d'unités SI dérivées

Grandeur physique	Nom spécial	Symbole	Équivalent
Angle plan	radian	rad	m/m=1
Angle solide	stéradian	sr	$m^2/m^2 = 1$
Vitesse			$m s^{-1}$
Accélération			$m s^{-2}$
Vitesse angulaire			$rad s^{-1}$
Fréquence	Herz	Hz	s^{-1}
Force	Newton	N	$kg m s^{-2}$
Pression	Pascal	Pa	$N m^{-2}$
Énergie	Joule	J	Nm , $kg m^2 s^{-2}$
Puissance	Watt	W	$J s^{-1}$, $kg m^2 s^{-3}$
Charge électrique	Coulomb	С	A s
Potentiel électrique	Volt	V	$J C^{-1}$, $W A^{-1}$
Résistance	Ohm	Ω	$V A^{-1}$
Conductance	Siemens	S	Ω^{-1} , $A V^{-1}$
Capacité	Farad	F	$C V^{-1}$
Champ électrique			$V m^{-1}, N C^{-1}$
Flux magnétique	Weber	Wb	V s
Champ magnétique	Tesla	Т	Wb m^{-2} , $N A^{-1} m^{-1}$
Inductance	Henri	Н	Wb A^{-1}
Température	Celsius	°C	K

3 Unités spéciales acceptées

Grandeur physique	Nom spécial	Symbole	Équivalent	
Temps	minute	min	60 s	
	heure	h	60 min = 3600 s	
	jour		24 heures = 86 400 s	
Volume	litre	L	$10^{-3} \ m^3 = 1 \ dm^3$	
Masse	tonne	t	1000 kg	

3.1 Unités adaptées au monde de l'atome

Longueur: 1 Angström (Å) = 10^{-10} m. C'est l'ordre de grandeur d'un rayon atomique.

Energie: 1 électronvolt (eV) $\simeq 1.602\ 176\ 4626(33)\ 10^{-19}\ J$. C'est l'ordre de grandeur d'une énergie d'ionisation, correspondant à l'arrachage d'un électron à un atome, ainsi que d'une énergie de liaison chimique covalente.

3.2 Unités adaptées au monde du noyau atomique

Longueur: 1 Fermi (F) = 1 femtomètre (fm) = 10^{-15} m. C'est l'ordre de grandeur d'un rayon nucléaire 1.

Energie: 1 méga électronvolt (MeV) = 10^{+6} eV $\simeq 1.6 \ 10^{-13}$ J. L'énergie qu'il faut fournir pour arracher un nucléon (neutron ou proton) d'un noyau est de l'ordre de 8 MeV. La fission d'un noyau d'Uranium libère environ 200 MeV.

3.3 Unités de longueurs adaptées au monde astronomique

1 unité astronomique (ua) $\simeq 1.495\,978\,706\,91(6)\,10^{+11}\,\mathrm{m}$. C'est la distance moyenne Terre-Soleil.

1 année-lumière (al) = $9.460\,530\,10^{+15}$ m. C'est la distance parcourue par la lumière dans le vide en une année. Notre galaxie, la *Voie Lactée*, est un disque aplati dont le diamètre est de l'ordre de 10^{+5} a.l., et son épaisseur de $6\,10^{+3}$ a.l.

1 parsec (pc) = 3.085 678 10⁺¹⁶ m = 3.261 633 al. C'est la distance à laquelle une étoile lointaine aurait, vue de la Terre, une parallaxe de 1 seconde d'arc. Notre galaxie, la *Voie Lactée*, possède un diamètre de l'ordre de 30 à 50 kpc. La galaxie la plus proche, la *nébuleuse d'Andromède*, est située à environ 570 kpc.

4 Multiples et sous-multiples : préfixes SI

Le préfixe d'une unité doit être choisi de telle sorte que la valeur numérique soit dans un intervalle commode, usuel-lement entre 0.1 et 1000 (par exemple : F = 200 kN; i = 0.5 mA).

Nom	Préfixe	Abréviation	Facteur multiplicatif
	yotta	Y	10^{24}
	zetta	Z	10^{21}
	exa	Е	10^{18}
	peta	P	10^{15}
un billion	tera	T	$10^{12} = 1\ 000\ 000\ 000\ 000$
un milliard	giga	G	$10^9 = 1\ 000\ 000\ 000$
un million	mega	M	$10^6 = 1\ 000\ 000$
mille	kilo	k	$10^3 = 1000$
cent	hecto	h	$10^2 = 100$
dix	deca	da	$10^1 = 10$
un			$10^0 = 1$
un dixième	déci	d	$10^{-1} = 0.1$
un centième	centi	c	$10^{-2} = 0.01$
un millième	milli	m	$10^{-3} = 0.001$
un millionième	micro	μ	$10^{-6} = 0.000001$
un milliardième	nano	n	$10^{-9} = 0.000\ 000\ 001$
un trilliardième	pico	p	$10^{-12} = 0.000\ 000\ 000\ 001$
	femto	f	$10^{-15} = 0.000\ 000\ 000\ 000\ 001$
	atto	a	10^{-18}
	zepto	z	10^{-21}
	yocto	у	10^{-24}

Références

- [1] Irwin Goodwin, Washington briefings, Physics Today 53(1) (January 2000) 47.
- [2] Robert A. Nelson, Guide for metric practice, Physics Today 54(8) Part II (August 2001) BG15-16.

^{1.} Plus précisément, pour un isotope de nombre de masse A, on a une formule empirique $r \simeq r_0 \ A^{1/3}$ où $r_0 \simeq 1.3$ E