Le 10 avril 1813 s’éteignait à Paris le mathématicien Joseph Louis Lagrange, également mécanicien et astronome.
L’un des apports essentiel de Lagrange à la physique théorique moderne est sans conteste sa création – avec Euler – du « calcul variationnel« , qui lui a permis de réécrire la mécanique de Newton sous une forme purement analytique [La1, La2, Ki01].

Préface de la "Mécanique Analytique" de Lagrange (1811)
Le calcul variationnel figure aujourd’hui plus que jamais au cœur de la formulation moderne des théories physiques fondamentales.
Lagrange a contribué de façon importante au développement de la mécanique céleste en développant le « théorie des perturbations séculaires » [MD99], en relation avec la question de la « stabilité du système solaire ». Cette théorie des perturbations sera ensuite étendue et améliorée par Laplace. Lagrange a également trouvé une solution particulière du « problème à trois corps ».
Notons enfin que, dès 1781, Lagrange est le premier à avoir introduit en mécanique des fluides le concept de « potentiel des vitesses » [Ch07].
Le vendredi 28 juin se tiendra la journée annuelle de la Société Mathématiques de France. Le programme prévisionnel annonce deux conférences :
- Sylvia Serfaty : Lagrange et le calcul des variations. L’auteur a déjà donné une conférence sur ce thème intitulée : « Lagrange et le calcul des variations : le calcul révolutionnaire du jeune mathématicien turinois », Bibliothèque Nationale de France (04 avril 2012), vidéo.
- Jacques Féjoz : Le problème de la stabilité du Système solaire, de Lagrange à nos jours ; pdf.
Orientation bibliographique :
- Principe de Fermat
- [La1] Joseph Louis Lagrange ; Mécanique Analytique – Tome I, (1811) ; archive.org
- [La2] Joseph Louis Lagrange ; Mécanique Analytique – Tome II, (1815) ; archive.org
- [Ki01] T. W. B. Kibble & F.H. Berkshire ; Classical Mechanics, Prentice Hall (4e édition-1997), ISBN : 058225972X . Ce livre contient la meilleure introduction élémentaire à la « mécanique analytique » (formalismes lagrangien et hamiltonien). Pour aller plus loin, cf. e.g. Herbert Goldstein, puis (pour les esprits matheux férus de géométrie différentielle) Vladimir Arnold (bibliographie).
- [MD] Carl D. Murray & Stanley F. Dermott ; Solar System Dynamics, Cambridge University Press (1999), ISBN 978-0-521-57597-3.
- [Ch07] Hubert Chanson ; Le Potentiel de vitesse pour les écoulements de fluides réels : la contribution de Joseph-Louis Lagrange, La Houille Blanche 5 (2007), 127-131 ; pdf.
- IHP/CNRS ; Lagrange, documentaire (2013), vidéo.
- Jacques Laskar ; Lagrange et la stabilité du système solaire, IHP (2013), vidéo.
- Alain Albouy ; Lagrange et le problème à N corps, IHP (2013), vidéo.
- Cédric Villani ; De la stabilité du système solaire à la stabilité des plasmas, IHP (2013), vidéo.
- Luigi Pepe ; Biographie scientifique de Lagrange, IHP (2013), vidéo.